

1

INCORPORATING NANOFIBRES INTO SYNTHETIC BONE MATERIAL

MEng Project

School of Engineering, University of Lincoln

University of Lincoln, School of Engineering

- The School of Engineering combines state-of-the-art R&D and teaching facilities with research informed teaching and industrial links.
- Listed as a principal partner of Siemens Industrial Turbomachinery Limited
- Key research areas in Power and Energy, and Intelligent Systems

Meet the team

Meet the team – Dr Nick Tucker

- Senior Lecturer Materials and Manufacturing
- PhD in mechanical and manufacturing systems engineering
- Peer and professional review approved assessor for the Institute of Materials, Minerals and Mining

Electrospun single polymer and long fibre composites (Sedat Celik, Mikhael Lyssounkine, Alison Fessard, Samaneh Karimi)

Meet the team – Natalie Czarnocki

- Background in electrospraying and electrospinning
- Role within Project Electrospinning and SEM
- **Career aspiration** is to work within testing and within the research and development department of materials

Dissertation Title:

Electro-Encapsulation of a Bioactive Material - 2017

Meet the team – Divarshan Sivakumar

- Background in electrospinning and composite materials
- Role within Project manufacturing scaffolds and castings

• **Career aspiration** is to work towards achieving chartership and work in a managerial environment

Dissertation Title: Nanofibre Reinforced Concrete - 2017

Meet the team – Rebecca Butterfield

- **Background** in CAD and Power & Energy
- Role within Project Key researcher and Initial design
- **Career aspiration** is to work in the Industrial Gas sector in a Technical Role

Dissertation Title:

Novel Design of a Biomass Pretreatment Washing Machine -2016

Meet the team – Matthew Warnes

- **Background** in 3D modelling and Finite Element Analysis
- Role within Project Modelling the moulds via CNC Machine and Casting Plaster
- **Career aspiration** is to use FEA modelling within structural analysis and work towards chartership

Dissertation Title: *Hyper elastic model of Neoprene hose - 2017*

Incorporating Nanofibres into Synthetic Bone Material

- Electrospinning fibres for to use as reinforcement
- Creating an effective Scaffold for testing
- Establishing an effective incorporation method
- Mechanically test Scaffold to establish effect of fibre reinforcement

Initial Research

SCHOOL OF ENGINEERING

Bones

Synthetic Bones

Nanofibres

Electrospinning Fibres – Equipment set up

Benefits of using electrospinning:

Large surface area – allows for a greater and better area for cells to grow on.

3D assembly – allows for intercellular growth, for the bone analogue it will add mechanical properties such as strength and flexibility.

Porosity – a porous structure will allow for cellular impalement which should be between 60-90%.

Initial Fibre Exploration - parameters

Initial Fibre Exploration – SEM Images

UNIVERSITY OF LINCOLN

Experiment Order	Substance Used and Amounts	Voltage (kV)	Duration (min)
J(2)	 Acetic Acid – 17.2g (66%) Citric Acid – 1.2g (8%) Gelatin – 1.6g (6%) (Oven-Cured, 140°C, 2 hrs) 	12	20

Fibre Integration analysis – Cellulose Nitrate

- Cellulose Nitrate chosen as fibre reinforcement – Hydrophobic
- Average Fibre Diameter:
 - Freshly Electrospun $1.714 \mu m$
 - After Plaster is applied $0.891 \mu m$
- Average Weight of fibres in one scaffold: 9.24mg
- Fibres are Electrospun for 10 minutes – shows high level of integration with Plaster of Paris

Initial mechanical testing – Plaster of Paris, with and without Reinforcement

	Breaking Loads fo Paris Specimens	r Plaster of
Specimen	Plaster of Paris Composite with Fibres	Plaster of Paris with Fibres
1	225.27156	154.34
2	290.42374	158.77
3	316.5459	166.73
4	326.27103	188.60
Average Breaking Loads (N)	289.62806	167.11
Standard Deviation (N)	45.496042	15.22

Conclusions drawn from Initial Testing

- Plaster of Paris to be used as the analogue material (due to cost, availability and mechanical properties)
- Cellulose Nitrate to be used as fibre reinforcement (due to spin capability and insolubility)
- Scaffold to be a layered composite with fibre reinforcement

Woven hone

fairly randomly

Fibrils 0,1-3µm in

Roughly isodiametric

-20 um in diameter

in reptiles.

birds.

Primary and

secondary

cumferential fracture

lamellae in callus.

mammals and Primary

Woven

bone

Scaffold design – Requirements and Concepts

	Composite structure	To replicate natural bone structure
Scaffold Design	Simplistic Geometry	To aid layering to achieve composite structure and for aid of manufacture and repeatability
Requirements	Pores of approximately 5mm radius	Aid cell growth and migration, whilst retaining adhesion
	Biologically sound material	To prevent rejection from the body, and to biodegrade

Tray Design – Concept Development

Tray Concept 1

- Large number of analogues to be produced at once
- Increase production efficiency
- Testing found that adding fibres by directly spraying onto tray was better than manually applying (using silicone backing paper)

Tray Concept 2

- Less analogues can be produced
- Creates analogues 30mm x
 80mm x 10mm
- Size allows for tray to be attached to Electrospinner – fibres sprayed directly

SCHOOL OF ENGINEERING

Tray Overlay

- Negative of Tray 3 (Refined)
- Acts as a press to create the centre layer of the Scaffold

Tray Production – Manufacturing and Material refinement

SCHOOL OF ENGINEERING

Production Method

- Positive mould cut out of foam, edges and grooves tidied using manual tooling
- Positive moulds cleaned, then coated with epoxy resin
- After resin dried, silicone rubber was poured in and allowed to set for 24 hours

Silicone Rubber 1: easycomposites[™] , clear, **nonmatte finish**

Silicone Rubber 1: Polycraft™ ,pink, matte finish

Fibre testing on Prototype tray - Parameters

SCHOOL OF ENGINEERING

PARAMETERS

Voltage: 12kV

Height of Cup: 250mm

Spinneret Tip to Target Distance: 200mm

Spinneret Tip Diameter: 1mm

Electrode Gap: 180mm

Alternating Voltage between Electrodes: 2 and 5kV

Optimum Room Temperature: 18 – 20°C

Optimum Humidity: 1.4 – 1.6g/m³

Prototype tray – Analogue Comparisons

SCHOOL OF ENGINEERING

easycomposites[™] clear tray – analogues

- Fairly rouch surface texture
- Well defined grooves
- Some irregularities on outer edges

Polycraft[™] pink tray – analogues

- Sligtly smoother surface texture
- Grooves and rigdges well defined
- Successful creation of 'middle' analogue

Weight testing – Fibre Spinning and Scaffold Drying

SCHOOL OF ENGINEERING

40.02g

38.92g

1.10g

22

Fibre testing on Prototype tray - *easycomposites*[™] clear tray

SCHOOL OF ENGINEERING

Silicon - Diameter

and Orientation

Fibre testing on Prototype tray - Polycraft[™] pink tray

SCHOOL OF ENGINEERING

Images of Cellulose Nitrate electrospun onto Pink Silicon *for 15 Minutes* with Addition of Plaster

Electrospun Cellulose Nitrate Fibres (15 minutes) with Plaster of Paris from Pink Silicon - Diameter and Orientation

Fibre testing on Prototype tray – Residue Comparison

Conclusions drawn from Refined Testing

- Cellulose Nitrate to be spun directly onto tray for a duration of 10 minutes
- Pink matte tray to be used for experimentation, as it produced well defined analogues, and greater fibre incorporation
- Adhesive between each layer to be PVOH (approved by School of Pharmacy consultation)

Scaffold production – Method of fibre incorporation

SCHOOL OF ENGINEERING

Scaffolds assembled, pressed & dried

Scaffold testing – Analogue layer arrangement

Scaffold testing – With Fibres & Without Fibres

SCHOOL OF ENGINEERING

Average Brea	aking Load (N)
With Fibres	Without Fibres
439.90N	298.60N

32% increase in breaking load required for Fibre reinforced Scaffolds

Recommendations and Next Steps

SCHOOL OF ENGINEERING

PRODUCTS ~	SERVICES V INDUSTRIES V		
United Kingdom Home >	900203 - Hydroxyspable		
eezes ALDRICH Hydroxyap wwder, 10 µm, ≥100 ynonym: Apatite hydroxidd ♦ SDS SIMILAR PR	m ² /g , Hydroxylapatite		
AS Number 1306-06-5	Linear Formula Ca ₁₀ (PO _d) ₆ (OH) ₂ EC Number 215-145-7		
-		Price and Availability	
Related Categories	20. Ca, Biocompatible Ceramica, Biomateriata, Biomedical Materiata, Materiata Science, More	SKU-Pack Size Availability	Price Quantity (GBP) Quantity
-	Materials, Materials Science,		(GBP) Guantity
Related Categories	Materiala, Materiala Science, More	SKU-Pack Size Availability 800203-50G Only 1 left in stock (more on the way) - FROM	(GBP) Guantity
Related Categories description	Materials, Materials Science, More Total Heavy Metals: \$20 ppm	SKU-Pack Size Availability	(GBP) Guanoty 124.50 0 * 6
Related Categories description form	Materials, Materials Science, More Total Heavy Metals: \$20 ppm powder	SKU-Pack Size Availability 800203-50G Only 1 left in stock (more on the way) - FROM	(GBP) Guanoty 124.50 0 * 6
description form particle size	Materiels, Materiels Science, More Total Heavy Metals: £20 ppm powder 10 µms2.0 µm	SKU-Pack Sce Availability S0225-56C Only 1 left in stock (more on the way) - FROM BALK ORDERST	(GBP) Guanoty 124.50 0 * 6

Expand range of 'bone material'

Bespoke geometries for particular purposes

Test wider sample size to eliminate further anomalous results

Utilise PVOH as a reinforcement – alignment and biodegradability

Examination of cell growth properties along Scaffold grooves

Thank-you for your time

We are happy to take any questions

