
Carsten Roppel, Schmalkalden University of Applied Sciences Blechhammer, D-98574 Schmalkalden, E-Mail: c.roppel@hs-sm.de

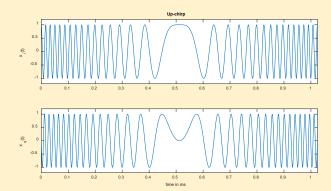
MATLAB EXPO 2025

LoRa

- LoRa is the physical layer of a long-range wide area network (LoRaWAN)
- Chirp spread spectrum (CSS) modulation allows for long-range communication over several kilometers with low-power devices
- In a typical application sensor nodes transmit their data to a gateway connected to a server network, e. g. The Things Network (TTN)

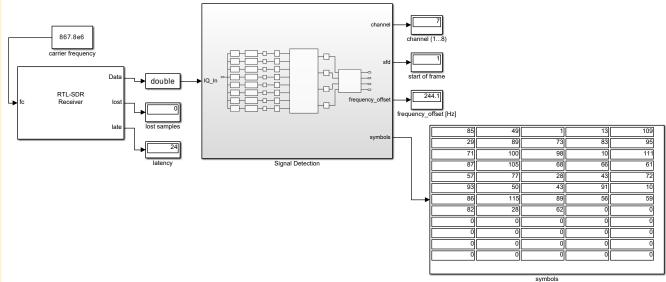
LoRa sensor nodes from Dragino, SenseCAP and Arduino

• In Europe LoRa uses the frequency plan EU863-870 with eight carrier frequencies 867.1 MHz, 867.3 MHz, ..., 868.5 MHz

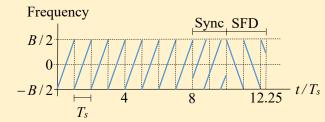

Chirp Spread Spectrum (CSS) Modulation

- Symbol time: $T_s = 2^{SF}/B$ SF: Spreading factor, $SF = 6 \dots 12$ B: Bandwidth 125 kHz or 250 kHz $T_s = 1.024$ ms for SF = 7, B = 125 kHz
- Forward error correction with code rates $R_c = 4/5, 4/6, 4/7 \text{ or } 4/8$
- Bitrate $r_b = SF R_c/T_s = 5468.75$ bit/s $(SF = 7, B = 125 \text{ kHz}, R_c = 4/5)$
- Up (down)-chirp: The frequency increases (decreases) linearly within ± B/2, the complex baseband representation is:

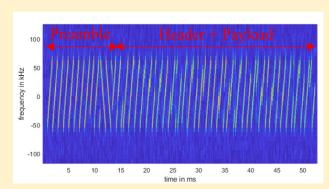
$$c_{up}(t) = \exp\left(j2\pi\left(f_0 + \frac{B}{2T_c}t\right)t\right)$$


• The symbol a_k determines the start frequency: $a_k \in \{0, 1, 2, ..., M\}, \qquad M = 2^{SF}$

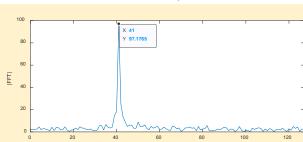
$$f_0 = -\frac{B}{2} + \frac{a_k}{M}B$$


Quadrature components of a basic up-chirp $(f_0 = -B/2, T_s = 1.024 \text{ ms})$

• Demodulation: By multiplying each symbol with a down-chirp a signal with constant frequency f_0 is obtained (dechirping)


LoRa Receiver with the RTL-SDR

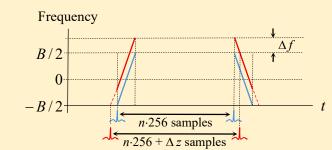
- The receiver allows to monitor the activity of LoRa nodes
- RTL-SDR (Software Defined Radio):
 - Low-cost receiver, frequency range
 25 MHz to 1.7 GHz
 - Converts the RF signal to baseband, the quadrature components are further processed with MATLAB/Simulink
 - o Hardware Support Package available
- LoRa packets are composed of a preamble with several consecutive up-chirps, a sync field, a start of frame delimiter (SFD) composed of 2.25 down-chirps, a header and a payload


Preamble of a LoRa packet

- Processing steps for SF = 7, B = 125 kHz:
 - \circ Filtering and frequency shifting according to the channel frequency ($f_s = 2 \text{ MHz}$)
 - \circ Downsampling by 8 ($f_s/8 = 2B = 250 \text{ kHz}$)
 - o Correlation with the up-chirp
 - o If an up-chirp is detected: Search for SFD
 - o Carrier frequency offset correction
 - o If SFD detected: Downsampling by 2 $(f_s/16 = B = 125 \text{ kHz})$, demodulation

Spectrogram of a LoRa packet ($f_s = 250 \text{ kHz}$)

- When $f_s = B = 125$ kHz and $T_s = 1.024$ ms, we have 128 samples/symbol
- The symbol is found by calculating the 128point-FFT and finding the maximum peak



128-point FFT of symbol $a_k = 41$

Carrier Frequency Offset Correction

- A maximum frequency offset Tx-Rx of $\Delta f = 0.25 \ B$ is allowed
- For $f_s = 250$ kHz, we have 256 samples/sym.
- When correlating the preamble with an up and a down-chirp, the number of samples between the correlation peaks is $n \cdot 256$ for $\Delta f = 0$
- If the number of samples differs by Δz , this corresponds to a frequency offset of

$$\Delta f = \Delta z \ 125 \text{ kHz/}(2 \cdot 256)$$

Up- and down-chirps in case of a frequency offset

• A frequency offset correction with a resolution of ± 244 Hz ($\Delta z = \pm 1$) is possible

References

Semtech Datasheet SX1276/77/78/79, Rev. 7, 2020.

Zhenqiang Xu, Shuai Tong, Pengjin Xie, Jiliang Wang: From Demodulation to Decoding: Toward Complete LoRa PHY Understanding and Implementation. ACM Trans. on Sensor Networks, Vol. 18, No. 4, Dec. 2022.

Robert W. Stewart, Kenneth W. Barlee, Dale S.W. Atkinson, Louise H. Crockett: *Software Defined Radio using MATLAB & Simulink and the RTL-SDR*. Strathclyde Academic Media, 2015.

Carsten Roppel (2025): FM RDS Receiver with the RTL-SDR

(https://www.mathworks.com/matlabcentral/fileexchange /100316-fm-rds-receiver-with-the-rtl-sdr), MATLAB Central File Exchange. Abgerufen 7. September 2025.

Carsten Roppel: *Grundlagen der Nachrichtentechnik*. Hanser-Verlag, 2. Aufl., 2023.