Title of module:	Numerical H	leat Transfer Simulation
Lecturer:	Prof. DrIng. Robert Pietzsch	
Qualification aim:	The students should be able to calculate independently temperature fields in	
	simple technical structures. They should know the terms and physical	
	quantities of	the theory of heat transfer and they should be able to apply them.
	The thermal	module of the ANSYS program to be safely used. One important
	competence	is to select the right finite element type for a given application and
	to understan	d the different prperties and degree of shape function. During the
	exam (120m	in) the students should demonstrate their skills to solve two heat
	transfer prob	plems using ANSYS.
Content:		
	1. laws and	I terms of heat transfer, balance equation of internal energy
	2. manual o	calculation of temperature fields and simple heat transfer problems
	3. fundame	ntals of the Finite Elements Method, elements formulation, shape
	functions	s, time integration methods, Introduction in ANSYS environment
	4. simple c	poling behaviour of a compact body
	5. steady h	eat conduction in a linear rod
	6. transient	heat conduction in a cooled slab
	7. thermal of	contact of two linear slabs at the face side (contact temperature)
	8. transient	heat exchange and temperature equalization in a plane structure
	9. steady h	eat conduction and heat transfer capacity of a flat fin
	10. thermom	echanical coupling of structural and thermal calculation- thermal
	strains a	nd stresses, thermal distortion
	11. axissymi	metric problems, solved in a cross section
	12. heat con	duction in volumetric bodies
13. radiation		heat transfer as boundary condition
	14. time-dep	endent thermal boundary conditions
Teaching methods:		computer exercise with partial lecture character (4SWS)
Necessary knowledges	S:	fundamentals of thermodynamics and heat transfer
Usability:		Renewable Resources Engineering (B.Eng.)
Preconditions for the	granting	preparing exam: individually solved exercises
of credits:		practical examination at the computer: 120min
Credits:		5 ECTS- Credits
Frequency:		annually in the winter semester
Workload:		150 hours (present time: 60h + self study 90h)
Duration of one unit:		90 min
Supporting documents	5	scriptum with solved and explained examples
Recommended publications:		ANSYS theory manual and elements documentation