

HOCHSCHULE SCHMALKALDEN ERSITY OF APPLIED SCIENCES

👝 Lasarinstitut

Results

Annett Dorner-Reisel^a, Steffen Weißmantel^b, Manuel Pfeiffer^b, Viola Matner^a, Xin Wang^c, Stefan Svoboda^d

- a) University of Applied Sciences Schmalkalden, Faculty of Mechanical Engineering, 98574 Schmalkalden, GERMANY
 - Laser Institut, University of Applied Sciences Mittweida, 09648 Mittweida, GERMANY b)

 - Saimaa University of Applied Sciences, Lappeenranta, FINLAND University of Applied Sciences Schmalkalden, Faculty of Electrical Engineering, 98574 Schmalkalden, GERMANY d)

Motivation

The sol-gel techniques are relatively low-cost, the reaction conditions are mild, and more-over the composition and structure of coatings can be easily controlled.

Sol-gel processing of alumina provides films with different microstructure [1-3]. Zhang et al [1] report that the wear life of sol-gel generated Al_2O_3 coatings can be very short, if the coating has no appropriate microstructure. They observe fine abrasive particles can form with ongoing wear. Some solgel alumina coatings showed slight plastic deformation according Zhang et al. [1]. Such coatings showed a longer wear life.

It is known, that surface topography plays an essential role in tribology. Laser impact is one possible method to create periodic surface topographies. Kunz et al. [2] describe laser-induced periodic surface structuring (LIPSS) gained rapidly increased interest in recent years. Not only wear behaviour, but wettability, optical properties or implementation of functional features to generate smart effects can be reached by reliable surface structuring of materials. surface structuring of materials

Experimental methods

Sol-gel coatings were deposited by dip coating on stainless steel 1.4403 (X5 CrNiMo19-11) samples.

As precursor a solution of aluminium-tri-sec-butoxide $Al[OCH(CH_3)C_2H_5]_3$ (99,9%, Sigma-Aldrich) in methoxyethanol (99,8%, Sigma-Aldrich) was selected

Following drying, the samples were heat treated in vacuum oven (0.002-0.008 mbar). Two different top temperatures were chosen, 900°C or 1100°C.

Laser treatment were used for generating the surface structure. The femtosecond laser Pharos 15-1000-PP of the company Light Conversion, Lithuania is a single-unit integrated laser system combining millijoule pulse energies and high average power.

Pharo laser system at the Laser institute Mittweida, Company Light Conversion

No.	Precursor	Top temperature	Laser treatment
1	AI[OCH(CH3)C2H5]3	900 °C	1
2	AI[OCH(CH3)C2H5]3	1100 °C	1
3	AI[OCH(CH3)C2H5]3	900 °C	Pav: 1.62 W; Ep: 5.8 µJ
4	AI[OCH(CH3)C2H5]3	1100 °C	Pav: 1.62 W; Ep: 5.8 µJ
5	AI[OCH(CH ₃)C ₂ H ₅] ₃	900 °	Pav: 9.80 W; Ep: 49 µJ
6	AI[OCH(CH3)C2H5]3	1100 °C	Pav: 9.80 W; Ep: 49 µJ
P _{AV} : laser power; E _P : pulse energy			

For laser structuring of the coated surface, pulse duration was 220 fs, repetition rate 220 Hz and laser beam radius 11.5 µm in focus. Two different surface structures were generated. A laser power P_{AV} of 1.62 W and a pulse energy E_p of 5.8 µJ were used to generate small dimpling. Bigger dimples were generated by a laser power P_{AV} of 9.80 W and a pulse energy E_p of 49 µJ.

References
[1] W. Zhang, W. Liu, C. Wang, "Effects of solvents on the tribological behaviour of sol-gel Al₂O₃ films", Ceram [1] W. Zh [2] G. B. Kunde, G.D. Yadav, "Sol-gel synthesis and characterisation of defect-free alumina films and its application in the prepa supported ultra-filtration membranes", Journal of Sol-Gel Science & Technology. Vol. 77, no. 1, pp. 266-277, 2016

[3] B. Hu, E. Jia, B. Du, Y. Yin, "A new sol-gel route to prepare dense Al₂O₃ thin films", Ceramics International, vol. 42, pp. 16867-16871, 2016 [4] M. Zahedi, N. Roohpour, A. K. Ray, "Kinetic study of cryst and Compounds, vol. 582, pp. 277-282, 2014

(5) S. Y. Rayes-López, R. S. Acuna, R. López-Juárez, J. S. Rodríguez, "Analysis of the phase transformation of aluminium format Al(O₂CH)₃ to α-alumina by Raman and infrared spectroscopy", Journal of Ceramic processing Research, vol. 14, no. 5, pp. 627-631, 2013 (6) S.K. Twari, R.K. Sahu, A.K. Pramanick, R. Singh, Development of conversion coating on mild steel prior to sol gel nanostructured Al₂O₃ coating for enhancement of corrosion resistance", Surface & Coatings Technology, vol. 205, pp. 4960-4967, 2011 [7] S. Ramya, T. Anita, H. Shaikh, J. R.K. Dayal, "Laser Raman microscopic studies of p during nitting in chloride solution", Corrosion Science, vol. 52, pp. 2114-2121, 2010

Stereomicroscopy

Scanning electron microscopy

Conclusions

- Successful tests of biomimetic laser dimpling of Al₂O₃ sol-gel coating according the natural model of "Crab shovel'
- Oxide interlayer increases with heat treatment temperature intensively
- Laser impact effects different heat treated zones with evaporation, melting and densification/ sintering of metallic or ceramic materials

