Development of a heatable composite material for series production through functionalisation of a bonding agent layer in the manufacture of classical wooden materials (EleiK)

Object of research:
- Integration of a heating function into a classical wooden material (e.g. plywood)
- Development of an innovative functional bonding agent layer that is electrically conductive as a result of additives
- Specification of the thermal properties to achieve optimal stability of form of the composite material and use as low-temperature heating system

Key words
- Wooden materials
- Renewable resources
- Functional integration
- Electrical conductivity
- Heating function
- Bonding agent layer
- Temperature control

Institutes involved and contact details:
- Schmalkalden University of Applied Sciences, Faculty of Mechanical Engineering, Structural Mechanics, Prof. Dr.-Ing. Hendrike Raßbach
 Contact: E-mail: h.rassbach@hs-sm.de
 Phone: 03683 688 2112
 Manufacturing Engineering/Tool Design, Prof. Dr.-Ing. Thomas Seul
 Contact: E-mail: t.seul@hs-sm.de, Phone: 03683 688 2103
 http://www.hs-schmalkalden.de
- Jowat AG, Ernst-Hilker-Straße 10-14, 32758 Detmold
- MeisterWerke Schulte GmbH, Johannes-Schulte-Allee 5, 59602 Rüthen

Period:
- 03/2016 – 08/2017 (18 months)

Funding amount:
- € 154,750.32

Results:
- Definition of a guide formulation of the electrically conductive bonding agent layer and the reproducible manufacture of the latter
- Specification of the thermal properties of the composite material in view of the subsequent use as low-temperature heating system
- Testing of the dimensional stability of the multi-layer composite laminated wood with regard to continuous alternating stress
- Provision of the proof of functionality