InTrance Project

Component Marking and Control of the Drive System

Project period
08/2016 – 07/2018

Problem / Solution approach
At present, components of injection moulded products are marked in a downstream manufacturing processes. The object of research of this project is the integration of an in-situ produced individual marking technology. Different marking methods are investigated to apply an individual component marking to the component during the injection moulding process. In this regard, the planned structure is to be similar to a data matrix code or QR code. Other focus areas of the research include thermal simulations, coding of the relevant production data, software development and the integration of a functional pattern into a manufacturing tool.

Information on funding
Financed with funds from the Central SME Innovation Programme (ZIM)
Project volume: €190,000.00
Funding reference number: 16KN045841

Keywords / Technologies
- Injection moulding
- Individual component marking
- In-situ
- Unique Device Identification (UDI)
- Software and hardware development

Project partners
Schmalkalden University of Applied Sciences
Faculty of Mechanical Engineering, Applied Plastics Technology, Prof. Dr.-Ing. T. Seul
Faculty of Electrical Engineering, Embedded Diagnostics Systems, Prof. Dr.-Ing. A. Wenzel

Formconsult Werkzeugbau GmbH,
Dipl.-Ing. (FH) S. Hoffmann

Project sponsor
Project sponsor of the
BMWi VDI / VDE / IT

Schmalkalden University of Applied Sciences,
Faculty of Electrical Engineering
Blechhammer 9
D-98574 Schmalkalden
Prof. Dr.-Ing. Thomas Seul
t.seul@hs-sm.de
Phone: 03683 688 1004
Dipl.-Ing. (FH) Stephan Hoffmann
shoffmann@formconsult.de
Phone: +49 3683 7928 20

Fig. 1: CAD model of a tool-integrated individual component marking
Photograph: Formconsult Werkzeugbau GmbH