Course Description – Winter Semester

<table>
<thead>
<tr>
<th>Title</th>
<th>Digital Signal Processing</th>
</tr>
</thead>
<tbody>
<tr>
<td>Faculty</td>
<td>Electrical Engineering</td>
</tr>
<tr>
<td>Professor</td>
<td>Prof. Dr. Carsten Roppel</td>
</tr>
<tr>
<td>ECTS</td>
<td>5</td>
</tr>
<tr>
<td>Level</td>
<td>Bachelor</td>
</tr>
<tr>
<td>Requirements</td>
<td>Basic knowledge in signals and systems and programming in C is recommended.</td>
</tr>
<tr>
<td>Add. Information</td>
<td>Lecture and laboratory experiments</td>
</tr>
</tbody>
</table>

Content

1. **Introduction**
2. **DSP Development Tools**
3. **Sampling und Quantization**
 - Sampling Theorem
 - Sampling of Bandpass Signals
 - Quantization
 - ADC Parameters and Types
4. **Discrete-Time Signals and Systems**
 - Impulse Response and Convolution
 - Fourier-Transform of Discrete-Time Signals
 - Discrete Fourier-Transform (DFT)
 - The z-Transform
5. **Finite Impulse Response (FIR) Filters**
 - Structure of FIR Filters
 - Design Methods
 - Implementation of FIR Filters
6. **Infinite Impulse Response (IIR) Filters**
 - Structure of IIR Filters
 - Bilinear Transform
7. **Representation of Numbers and Quantization of Filter Coefficients**
8. **Sampling Rate Conversion**
 - Decimation
 - Interpolation